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Abstract. A model of spherically symmetric SU(2) gauge theory is considered. The self-duality equations
are written and it is shown that they are compatible with the Einstein-Yang-Mills equations. It is proven
that the SU(2) gauge model is self-dual on a Schwarzschild space-time but not on a Reissner-Nordström one.
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1 Introduction

The self-duality equations are important in gauge theories
because they show the connection between gauge models
with internal symmetry groups and gauge theory of grav-
ity. They are differential equations of the first order and it
is easier to investigate the solutions for different particular
configurations of the gauge fields and of space-times. One
of the most important property of the self-duality equa-
tions is that they imply the Yang-Mills field equations. In
this paper we will prove this property for the general case
of a gauge theory with compact Lie group of symmetry
over a 4-dimensional space-time manifold.
It is important to remark that there are 3m indepen-

dent self-duality equations (of the first order) while the
number of Yang-Mills equations is equal to 4m, where m
is the dimension of the gauge group. Both of them have 4m
unknown functions which are the gauge potentials Aa

µ(x),
a = 1, 2, ....,m; µ = 0, 1, 2, 3. But, we have, in addition, m
gauge conditions forAa

µ(x) (for example Coulomb, Lorentz
or axial gauge) which together with the self-duality equa-
tion constitute a system of 4m equations. The Bianchi
identities for the self-dual stress tensor F a

µν coincide with
the Yang-Mills equations and do not imply therefore sup-
plementary conditions.
In sects. 2 and 3 we will use the axial gauge in order to

obtain the self-duality equations for a SU(2) gauge the-
ory over a curved space-time. Section 4 is devoted to the
study of compatibility between self-duality and Yang-Mills
equations. In fact, we will write the Einstein-Yang-Mills
equations and we will analyse only the Yang-Mills sector.
The Einstein equations cannot be obtained of course from
self-duality. They should be obtained if we would consider
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a gauge theory having P × SU(2) as symmetry group,
where P is the Poincaré group. More generally, a gauge
theory of N -extended supersymmetry can be developed
by imposing the self-duality condition.

2 The field-strength tensor of the gauge fields

We will consider a SU(2) gauge theory over a 4-
dimensional space-time manifold M , spherically symmet-
ric, endowed with the metric

ds2 = σ2Ndt2 − 1
N
dr2 − r2(dθ2 + sin2 θdϕ2), (2.1)

where σ and N are function depending only on the r
variable. For σ = 1 and N = 1 − 2m

r , we obtain the
Schwarzschild metric, while for σ = 1 and N = 1− 2M

r +
Q2+1

r2 , we have the Reissner-Nordström (RS) metric. The
components of the metric tensor gµν are

g00 = σ2N, g11 = − 1
N
, g22 = −r2, g33 = −r2 sin2 θ,

(2.2)
and the determinant of this tensor is

g = det(gµν) = −σ2r4 sin2 θ,
√−g = σr2 sin θ. (2.3)

The Lie algebra of SU(2) group is characterized by the
structure equations

[Ta, Tb] = εabcTc; a, b, c = 1, 2, 3, (2.4)

where εabc is the Levi-Civita symbol of rank 3 with ε123 =
1. The basic elements of the model are (M, gµν , A), where
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M is the space-time manifold with the metric coefficients
given in (2.2), and the Lie algebra-valued 1-form is A =
Aµdx

µ = Aa
µTadx

µ. The Lie algebra-valued 2-form of the
gauge fields Aa

µ is defined by

F =
1
2
Fµνdxµ ∧ dxν =

1
2
F a

µνTadxµ ∧ dxν , (2.5)

where F a
µν are the components of the stress tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + εabcA

b
µA

c
ν . (2.6)

The spherically symmetric SU(2) gauge fields will be
parametrized as (Witten ansatz) [1]

A = uT3dt+ w(T2dθ − T1 sin θdϕ) + T3 cos θdϕ, (2.7)

where u and w are function depending only on the vari-
able r. Using the ansatz (2.7), we obtain the following
non-null components of the stress tensor:

F 1
02 = −uw, F 1

13 = −w′ sin θ,

F 2
03 = −uw sin θ, F 2

12 = w′,

F 3
01 = −u′, F 3

23 = (w
2 − 1) sin θ, (2.8)

with u′ = du
dr and w

′ = dw
dr .

Now, we introduce the dual 2-form ∗F (the symbol
“∗” denoting the Hodge dual map) whose components are
defined by

∗F a
µν =

1
2
√−gεµνρλF

aρλ, (2.9)

where εµνρλ is the Levi-Civita symbol of rank 4 with
ε0123 = 1. The non-null components of ∗F are

∗F 1
02 = σNw′, ∗ F 1

13 = −uw sin θ
σN

,

∗F 2
03 = σNw′ sin θ, ∗ F 2

12 =
uw

σN
,

∗F 3
01 =

σ(w2 − 1)
r2

, ∗ F 3
23 =

r2u′ sin θ
σ

. (2.10)

In the next section we will impose the self-duality condi-
tion ∗F = iF for the 2-form F and we will obtain the self-
duality equations for the SU(2) gauge fields. We will show
that these equations are compatible with the Einstein-
Yang-Mills (EYM) equations of the model. In fact, we
will prove that this property is true for any self-dual gauge
theory with compact gauge Lie group.

3 Self-duality equations

A self-dual (or anti-self-dual) form T over a differential
manifold M can be constructed only if M is of even di-
mension and the following equation is satisfied [2]:

∗ ∗ T = λT ; rankT =
1
2
dimM. (3.1)

But, the dual map (or the Hodge duality) has the property

∗ ∗ T = (−1)k(n−k)T (for Euclidean metric),

∗ ∗ T = −(−1)k(n−k)T (for Minkowski metric), (3.2)

where k is the rank of T and n is the dimension of M .
This means that the quantity λ in (3.1) is constrained to
very special values:

±T = ∗ ∗ T = ∗(λT ) = λ2T ;

that is

λ = ±1, if ∗ ∗T = T (Euclidean metric),
λ = ±i, if ∗ ∗T = −T (Minkowski metric). (3.3)

In our model, the rank of F is k = 2 and the dimen-
sion of the space-time M is n = 4. Then, the self-duality
condition is [3]

∗F = iF . (3.4)

Now, if we introduce the components (2.8) and (2.10) in
(3.4), we obtain the following self-duality equations:

σNw′ = −iuw,
r2

σ
u′ = i(w2 − 1). (3.5)

These equations are of the first order and they determine
the gauge potential functions u(r) and w(r). The metric
coefficients σ andN are determined by the EYM equations
which are of second order and, as we will prove in the next
section, they determine also the gauge potential functions
u(r) and w(r).
The simplest solution of the self-duality equations (3.5)

coupled with Einstein equations (see sect. 4) is [1]

u = 0, w = ±1, σ = 1, N = 1− 2m
r

, (3.6)

which describes the Schwarzschild metric and a pure gauge
Yang-Mills field. Therefore, the SU(2) gauge model (2.7)
has the property of self-duality on a Schwarzschild space-
time.

4 Einstein-Yang-Mills equations

The integral action of our model is

SEYM =
∫ {

− 1
16πG

R− 1
4Ke2

TrFµνF
µν

}√−gd4x,
(4.1)

where e is the gauge coupling constant, R is the scalar
curvature associated to gµν and Tr(TaTb) = Kδab. For
G = SU(2) we choose Ta = 1

2τa (τa being the Pauli ma-
trices) and then K = 1

2 . The gravitational constant G is
the only dimensionful quantity in the action (the units
� = c = 1 are understood).
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Taking δSEYM = 0 with respect to Aa
µ and gµν fields,

we obtain the following general form of the EYM equa-
tions [3]:

1√−g ∂µ(
√−gF aµν) + fa

bcA
b
µF

cµν = 0 ,

(Yang-Mills equations), (4.2)

where fa
bc = −fa

cb are the structure constants of the gauge
group, and respectively

Rµν − 1
2
gµνR = 8πGTµν , (Einstein equations), (4.3)

with the gauge-invariant stress-energy tensor

Tµν =
1

Ke2
Tr

(
−FµρFν

ρ +
1
4
gµνFρλF

ρλ

)
. (4.4)

Then, introducing (2.2) and (2.8) in (4.2) and (4.3), we
obtain the EYM equations of our model:

(σNw′)′ =
σ

r2
w

(
w2 − 1) − 1

σN
u2w, (4.5)

(
r2

σ
u′

)′
=
2
σN

uw2, (4.6)

σ′

σ
=
2
r
w′2 +

2
N2σ2r

w2u2, (4.7)

1
2
(N ′r +N − 1) + r2

2σ2
u′2 +

1
Nσ2

u2w2

+Nw′2 +
1
2r2

(
w2 − 1)2

= 0, (4.8)

where we used K = 1
2 and

4πG
e2 = 1 units. These equations

admit the particular solution given in (3.6). They admit
also the solution with a non-trivial gauge field describing
colored black holes [4]:

u = u(∞) + Q

r
, w = 0, N = 1− 2M

r
+
Q2 + 1
r2

, σ = 1.

It corresponds to the RN metric with the electric charge Q
and the unit magnetic charge. However, it is not a solution
of the self-duality equations (3.5), so that the model (2.7)
cannot be self-dual on a RN space-time.
Many other solutions (particle like, sphaleron type,

with Λ-term, stringy type, axially symmetric etc.) for the
SU(2) gauge theory are given by Volkov and Gal’tsov [1].
Local solutions of the static, spherically symmetric, EYM
equations with SU(2) gauge group are studied by Zotov [5]
on the basis of dynamical system methods. In this case it
is proven the existence of solutions with oscillating metric
as well as the existence of local solutions for all known for-
mal series expansions. Exact solutions for self-dual SU(2)
gauge theory with axial symmetry are given in our pa-
per [6]. However, these solutions are not self-dual.
Let us compare now the self-duality equations (3.5)

with the first two EYM equations (4.5) and (4.6). If we

take the derivatives with respect to r of the equations
(3.5), then we obtain

(σNw′)′ = −i (u′w + uw′) , (4.9)(
r2

σ
u′

)′
= 2iww′.

Now, if we replace iw′ and iu′ deduced from (3.5) into the
left-hand sides of (4.9), then we obtain the EYM equations
(4.5) and (4.6). Of course, the other two EYM equations
(4.7) and (4.8) cannot be obtained from the self-duality
equations of the gauge fields. This may be possible if we
develope a gauge theory with the gauge group P ×SU(2),
where P is the Poincaré group [7].
In fact, the above result is valid for any compact Lie

group. Indeed, if we start with the self-duality equations
(2.9), written in the equivalent form [3]

∗F aµν = − 1
2
√−g ε

µνρλF a
ρλ = iF aµν , (4.10)

then we have

i√−g ∂µ

(√−gF aµν
)
= − 1

2
√−g

(
εµνρλ∂µF

a
ρλ

)
. (4.11)

But, it can be verified by a direct calculus that the follow-
ing property is satisfied if the tensor F a

ρλ is self-dual:

1
2
√−g

(
εµνρλ∂µF

a
ρλ

)
= ifa

bcA
b
µF

cµν . (4.12)

Now, if we introduce (4.12) into (4.11), then we obtain
the Yang-Mills equations (4.2). Therefore, from the self-
duality equations (of the first order) one obtains the Yang-
Mills equations (of the second order) for any gauge theory
with compact Lie group.

5 Concluding remarks

In this paper we have considered a spherically symmet-
ric SU(2) gauge theory in a curved space-time. The self-
duality equations for the gauge fields have been obtained
and the connection with the Yang-Mills equations has
been investigated. We proved that Yang-Mills equations
result from duality and that this property is true for any
compact Lie group.
The SU(2) gauge model considered in this paper has

the property of self-duality on a Schwarzschild space-time
but not on a Reissner-Nordström one.
The Einstein equations for the metric coefficients can-

not be obtained from self-duality. They should be derived
if we considered a gauge theory with the direct product
group P ×SU(2), where P is the Poincaré group. Because
the N -extended supergroups include both the Poincaré
and an internal group of symmetry like SU(N), it is im-
portant to study the self-duality equations for the super-
symmetry [8].
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